4 Condense the expression to the logarithm of a single quant
4. Condense the expression to the logarithm of a single quantity.
Solution
given
1/2 [ ln(x+1) + 5ln(x-1) + 2(6 ln x - ln sqrt(x) ]
first a lnb = ln b^a formula
so 6 lnx = ln x^6 and 5 ln(x-1) = ln(x-1)^5
1/2 [ ln(x+1) + ln(x-1)^5 + 2( ln x^6 - ln sqrt(x) ]
now ln a - ln b = ln(a/b)
so ln x^6 - ln sqrt(x) = ln x^6 / sqrt(x)
1/2 [ ln(x+1) + ln(x-1)^5 + 2( ln x^6 / sqrt(x) ]
now 2( ln x^6 / sqrt(x) ] = ln x^12 / x
1/2 [ ln(x+1) + ln(x-1)^5 + ln x^12 / x ]
1/2 [ ln(x+1) + ln(x-1)^5 + ln x^11 ]
now ln a + ln b+ ln c = log abc
so 1/2 ln (x+1) (x-1)^5 x^11) = [ (x+1) (x-1)^5 x^11) ] ^1/2
![4. Condense the expression to the logarithm of a single quantity. Solutiongiven 1/2 [ ln(x+1) + 5ln(x-1) + 2(6 ln x - ln sqrt(x) ] first a lnb = ln b^a formula 4. Condense the expression to the logarithm of a single quantity. Solutiongiven 1/2 [ ln(x+1) + 5ln(x-1) + 2(6 ln x - ln sqrt(x) ] first a lnb = ln b^a formula](/WebImages/29/4-condense-the-expression-to-the-logarithm-of-a-single-quant-1078668-1761566123-0.webp)