a Construct a 95 twosided confidence interval on the mean li

(a) Construct a 95% two-sided confidence interval on the mean life.

(b) Construct a 95% one-sided lower confidence interval on the mean life.

(c) Suppose that we want to be 95% confident that the error in estimating the mean life is less than five hours. What sample size should be used?

Solution

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    1000          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    20          
n = sample size =    10          
              
Thus,              
Margin of Error E =    12.39590065          
Lower bound =    987.6040994          
Upper bound =    1012.395901          
              
Thus, the confidence interval is              
              
(   987.6040994   ,   1012.395901   ) [ANSWER]

*******************

b)

Note that              
      
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
where              

alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    1000          

z(alpha/2) = critical z for the confidence interval =    1.644853627          

s = sample standard deviation =    20          
n = sample size =    10          
              
Thus,              

Lower bound =    989.5970322          

Thus, u > 989.597 [ANSWER]

**********************

c)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.025  
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
s = sample standard deviation =    20  
E = margin of error =    5  
      
Thus,      
      
n =    61.46334113  
      
Rounding up,      
      
n =    62   [ANSWER]

(a) Construct a 95% two-sided confidence interval on the mean life. (b) Construct a 95% one-sided lower confidence interval on the mean life. (c) Suppose that w
(a) Construct a 95% two-sided confidence interval on the mean life. (b) Construct a 95% one-sided lower confidence interval on the mean life. (c) Suppose that w

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site