a Construct a 95 twosided confidence interval on the mean li
(a) Construct a 95% two-sided confidence interval on the mean life.
(b) Construct a 95% one-sided lower confidence interval on the mean life.
(c) Suppose that we want to be 95% confident that the error in estimating the mean life is less than five hours. What sample size should be used?
Solution
a)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    1000          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    20          
 n = sample size =    10          
               
 Thus,              
 Margin of Error E =    12.39590065          
 Lower bound =    987.6040994          
 Upper bound =    1012.395901          
               
 Thus, the confidence interval is              
               
 (   987.6040994   ,   1012.395901   ) [ANSWER]
*******************
b)
Note that              
       
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 where              
alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    1000          
z(alpha/2) = critical z for the confidence interval = 1.644853627
s = sample standard deviation =    20          
 n = sample size =    10          
               
 Thus,              
Lower bound = 989.5970322
Thus, u > 989.597 [ANSWER]
**********************
c)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    20  
 E = margin of error =    5  
       
 Thus,      
       
 n =    61.46334113  
       
 Rounding up,      
       
 n =    62   [ANSWER]


