The fracture strength of a certain type of manufactured glas
The fracture strength of a certain type of manufactured glass is normally distributed with a mean of 560 MPa with a standard deviation of 12 MPa.
(Round to 4 decimal places)
a)
What is the probability that a randomly chosen sample of glass will break at less than 560 MPa?
(b)
What is the probability that a randomly chosen sample of glass will break at more than 582 Mpa?
(c)What is the probability that a randomly chosen sample of glass will break at less than 593 MPa?
Solution
A)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    560      
 u = mean =    560      
           
 s = standard deviation =    12      
           
 Thus,          
           
 z = (x - u) / s =    0      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   0   ) =    0.5 [ANSWER]
*******************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    582      
 u = mean =    560      
           
 s = standard deviation =    12      
           
 Thus,          
           
 z = (x - u) / s =    1.833333333      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.833333333   ) =    0.033376508 [ANSWER]
***********************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    593      
 u = mean =    560      
           
 s = standard deviation =    12      
           
 Thus,          
           
 z = (x - u) / s =    2.75      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   2.75   ) =    0.997020237 [ANSWER]


