x3 dydx 3x2y x y2 0Solutionx3dydx 3x2yx x3dy 3x2ydxxdx di
     x^3 dy/dx + 3x^2y = x y(2) = 0 
  
  Solution
x3dy/dx +3x2y=x
x3dy +3x2ydx=xdx
divide by x3 on both sides
(x3/x3)dy+3(x2/x3)ydx=(x/x3)dx
dy+(3/x)ydx=(1/x2)dx
integrating factor =e(3/x)dx
integrating factor =e(3lnx)
integrating factor =e(lnx^3)
integrating factor =x3
multiply on both sides by x3
x3dy+(3/x)x3ydx=x3(1/x2)dx
dyx3+y3x2dx=xdx
product rule:u\'v +uv\' =(uv)\'
(yx3)\'=xdx
integrate on both sides
(yx3)\'= xdx
yx3=(1/2)x2 +c
given y(2)=0
0*23=(1/2)22 +c
0=2+c
c=-2
yx3=(1/2)x2 -2
y=(1/2)(x2/x3) +(c/x3)
y=(1/(2x))+(c/x3) is the solution

