Prove that if n is a positive integer then Prove that if n i
Prove that, if n is a positive integer, then
Prove that, if n is a positive integer, then Summation_i = 1^n 1/i(I + 1) = 1 - 1/n + 1Solution
sigma 1/i(i+1)
so, in the numerator add i and substract i
sigma 1+i-i/i(i+1) = sigma 1+i/i(i+1) - sigma i/i(i+1)
=sigma 1/i - sigma 1/(i+1)
1+1/2+1/3+1/4.... 1/n - [1/2+1/3+1/4....... 1/n+1/(n+1)]
1-1/(n+1)
hence,proved
