Prove that n 3n for each integer n greaterthanorequalto 7So
     Prove that n! > 3^n for each integer n greaterthanorequalto 7. 
  
  Solution
Let us prove this by induction.
Let n =7
7! = 5040 and 3^7 = 2187
So n! > 3^n when n =7
------------------------------------------------
Let us assume k! >3k for some k >=7
Consider k+1
(k+1)! = k!(k+1) > 3k(k+1)
Since k>7, k+1 >3
So (k+1)! = k!(k+1) > 3k(k+1)>3k(3)
Or (k+1)! >3k+1, if true for n =k
Already true for n =7
Hence true for n =8,9,10,.....
Proved by mathematical induction for n >=7

