Calculate the reactions at the supports A B and C for the be
Solution
solution:
1)here it is continuous beam hence we have to solve it for support reaction by three moment principle as follows
MaL1+2Mb(L1+L2)+McL2=6a1x1/L1+6a2x2/L2
2)here for concentrated load is acting centrally hence
L1=4 m
4m=4 m another section ratio
m=1
here moment at a,b,c are
Ma=-[3PL1/16][2+3m/3+3m]=-7.5 kNm
Mb=-[3PL1/16][2/3+3m]=-3 kNm
Mc=[3PL1/16][1/3+3m]=1.5 kNm
here for second concentrated load moment are
L2=4
4m=4
m=1
here again
Ma=[wL2^2/8][1/3+3m]=3 kNm
Mb=-[wL2^2/8][2/3+3m]=-6 kNm
Mc=[-wL2^2/8][2+3m/3+3m]=-13.5 kNm
hence resultant moment are
Ma=-7.5+3=-4.5 KNm
Mb=-3-6=-9 KNm
Mc=1.5-15=-13.5 KNm
4)hence support reaction are
Ra=Rb=12/2=6 KN
Ra\'=Mb/L1=-9/4=-2.25 KN
Ra1=Ra-Ra\'=6+2.25=8.25 KNm
Rb2=Rb+Ra\'=6-2.25=3.75 KN
6)for second span
Rb=Rc=36/2=18 KN
Rc\'=Mb/L2=-9/4=-2.25 KN
Rb2=Rb-Rc\'=18+2.25=20.25 KN
Rc=Rb+Rc\'=18-2.25=15.75 KN
hence net reaction for beam are
Ra=8.25 KN
Rb=3.75+20.25=24 KN
Rc=15.75 KN
7)now shear force diagram as follows
Ral=0 KN
Rar=8.25 KN
R12l=8.25 KN
R12r=8.25-12=-3.75 KN
Rbl=-3.75 KN
Rbr=-3.75+24=20.25 KN
Rcl=20.25-36=-15.75 KN
RCr=-15.75+15.75=0
8)bending moment diagram is
Ma=-4.5 KNm
M12=-4.5+8.25*2=12 KNm
Mbl=-4.5+8.25*4-12*2=4.5 KNm
Mbr=4.5-9=-4.5 KNm
Mcl=-9+24*4-72=15 KNm
MCr=15-15=0 KNm

