Entry represents area under the cumulative standardized norm
Solution
1.
z1 = lower z score =    -0.1      
 z2 = upper z score =     2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.460172163      
 P(z < z2) =    0.977249868      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.517077705   [ANSWER]
************************
2.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    5      
 u = mean =    2      
           
 s = standard deviation =    4      
           
 Thus,          
           
 z = (x - u) / s =    0.75      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.75   ) =    0.226627352 [ANSWER]
************************
3.
Getting the outward areas of the two extreme tails,          
           
 alpha/2 = (1-middle area)/2 =    0.1814      
           
 Thus, the z values bounding these tails, using table/technology,          
           
 z1 = lower z value =    -0.910042683      
 z2 = upper z value =    0.910042683      
Hence, a = 0.910042683 [ANSWER]
***************************
4.
Left tailed area of x = 3:
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    3      
 u = mean =    3.2      
           
 s = standard deviation =    4      
           
 Thus,          
           
 z = (x - u) / s =    -0.05      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -0.05   ) =    0.480061194
   
 Thus, the left tailed area of b should be 0.480061194 + 0.1952 = 0.675261194
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.675261194      
           
 Then, using table or technology,          
           
 z =    0.454488021      
           
 As b = u + z * s,          
           
 where          
           
 u = mean =    3.2      
 z = the critical z score =    0.454488021      
 s = standard deviation =    4      
           
 Then          
           
 b = critical value =    5.017952083   [ANSWER]  


