Let fx be a polynomial A basic algebra states that c is a ro
Let f(x) be a polynomial. A basic algebra states that c is a root if f(x) if and only if f(x)= (x-c)g(x) for some polynomial g(x). We say that c is a multiple root if f(x)=(c-x)2h(x) where h(x) is a polynomial.
a) show that c is a multiple root of f(x) if and only if c is a root of both f(x) and f\'(x).
b) use part a to determine whether c= -1 is a multiple root of each of the following polynomials:
(i) y=x5+2x4-4x3-8x2-x+2
(ii) y= x4+x3-5x2-3x+2
Solution
a)
If c is a multipe root of f(x) then
f(x)=(x-c)^2h(x)
f\'(x)=2(x-c)h\'+(x-c)^2h
f\'(c)=0
Hence, a root of f(x) and f\'(x)
Let c be a root of f(x) and f\'(x)
f(x)=(x-c)h(x)
f\'(x)=h(x)+(x-c)h\'(x)
f\'(c)=0=h(c)
Hence, h(c)=0
So, h(x)=(x-c)g(x)
So, f(x)=(x-c)^2g(x)
So,c is a multipel root of f(x)
b)
i)
Setting x=-1 gives
y(-1)=-1+2+4-8+1+2=0
y\'=5x^4+8x^3-12x^2-16x-1
y\'(-1)=5-8-12+16-1=0
Hence, c=-1 is a multiple root
ii)
y(-1)=1-1-5+3+2=0
y\'(x)=4x^3+3x^2-10x-3
y\'(-1)=-4+3+10-3=6
Hence, c=-1 is not a multiple root

