A doctor wants to estimate the HDL cholestrol of all 20 to 2
A doctor wants to estimate the HDL cholestrol of all 20 to 29 year females. How many subjects are neede to estimate the HDL chrolestrol with 3 points with 99% confidence assuming o=15.6? Suppose the doctor would be content with 90% confidence. How does the decrease in confidence affect the sample size required?
Solution
a)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.575829304  
       
 Also,      
       
 s = sample standard deviation =    12.8  
 E = margin of error =    3  
       
 Thus,      
       
 n =    120.7846066  
       
 Rounding up,      
       
 n =    121   [ANSWER]
*******************
b)
As the sample size is directly proportional to the square of the critical z (which decreases with decreasing confidence level), then n would decrease. [ANSWER, SAMPLE SIZE DECREASES]
To verify,
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    12.8  
 E = margin of error =    3  
       
 Thus,      
       
 n =    69.93162369  
       
 Rounding up,      
       
 n =    70   (it decreased from 121 to 70)


