Use the Law of Sines to solve for all possible triangles tha
Solution
b = 46 , c = 43 , <C = 36o
using law of cosines a/sinA = b/sinB = c/sinC
c/sinC = 43 / sin(36o)
==> c/sinC = 73.156
==> b/ sinB = 73.156
==> sinB = b/ 73.156
==> sinB = 46/73.156
==> sinB = 0.629
==> B = sin-1(0.629) = 38.961 , (180 - 38.961) since sine function is positive in I and II quadrants
==> B = 38.961o , 141.039o
Sum of angles in a triangle = 180o
==> A + B + C = 180o
==> A = (180o - B - C)
for B = 38.961o
==> A = (180o - 38.961 - 36)
==> A = 105.039o
for B = 141.039o
==> A = (180o - 141.039 - 36)
==> A = 2.961o
a/sinA = 73.156
==> a = 73.156(sinA)
for A = 105.039o
==> a = 73.156(sin105.039o)
==> a = 70.65
for A = 2.961o
==> a = 73.156(sin2.961o)
==> a = 3.779
Hence for smaller A :
<A = 2.961o , <B = 141.039o , a = 3.779
for larger A :
<A = 105.039o , <B = 38.961o , a = 70.65

