The seasonal output of a new experimental strain of pepper p
The seasonal output of a new experimental strain of pepper plants was carefully weighted. The mean weight per plant is 15.0 pounds, and the standard deviation of the nomlly distributed weights is 1.75 pounds. Of the 200 plants in the experiment, how many produced peppers weighing between 13 and 16 pounds?
A. 100
B. 118
C. 197
D. 53
E. None of the above
Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    13      
 x2 = upper bound =    16      
 u = mean =    15      
           
 s = standard deviation =    1.75      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.142857143      
 z2 = upper z score = (x2 - u) / s =    0.571428571      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.126548954      
 P(z < z2) =    0.716145417      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.589596462      
Thus, there are 0.589596462*200 = 117.9192924 = 118 between 13 and 16 lbs.
 [ANSWER: 118, OPTION B]

