How to use standard normal table in question 5 Could you ple
Solution
Normal Distribution
 Mean ( u ) =0
 Standard Deviation ( sd )=1
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 b)
 P(X < 0) = (0-0)/1
 = 0/1= 0
 = P ( Z <0) From Standard Normal Table
 = 0.5                  
c)
 P(X > 1) = (1-0)/1
 = 1/1 = 1
 = P ( Z >1) From Standard Normal Table
 = 0.1587                  
 P(X < = 1) = (1 - P(X > 1)
 = 1 - 0.1587 = 0.8413                  
 f)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 0.5) = (0.5-0)/1
 = 0.5/1 = 0.5
 = P ( Z <0.5) From Standard Normal Table
 = 0.69146
 P(X < 1) = (1-0)/1
 = 1/1 = 1
 = P ( Z <1) From Standard Normal Table
 = 0.84134
 P(0.5 < X < 1) = 0.84134-0.69146 = 0.1499                  
h)
 P ( Z > x ) = 0.8
 Value of z to the cumulative probability of 0.8 from normal table is -0.84
 P( x-u/ (s.d) > x - 0/1) = 0.8
 That is, ( x - 0/1) = -0.84
 --> x = -0.84 * 1+0 = -0.842                  

