Consider the following encryption algorithm Key size 32 bit
     Consider the following encryption algorithm - Key size: 32 bits rk0 Block size: 48 bits Structure: SP-Network with 10 rounds S-box is the same as AES M: Linear Transition rk2 M is a 3x3 matrix in GF(28) . GF(28) is the same field in AES rk9 01 F7 F7 M= 102 02 011, M-1-1F7F7 01 F7 01 F7 01 02 02 02 01 02    int main() {   int m, n, p, q, c, d, k, sum = 0;   int first[10][10], second[10][10], multiply[10][10];     printf(\"Enter the number of rows and columns of first matrix\ \");   scanf(\"%d%d\", &m, &n);   printf(\"Enter the elements of first matrix\ \");     for (c = 0; c < m; c++)     for (d = 0; d < n; d++)       scanf(\"%d\", &first[c][d]);     printf(\"Enter the number of rows and columns of second matrix\ \");   scanf(\"%d%d\", &p, &q);     if (n != p)     printf(\"Matrices with entered orders can\'t be multiplied with each other.\ \");   else   {     printf(\"Enter the elements of second matrix\ \");       for (c = 0; c < p; c++)       for (d = 0; d < q; d++)         scanf(\"%d\", &second[c][d]);       for (c = 0; c < m; c++) {       for (d = 0; d < q; d++) {         for (k = 0; k < p; k++) {           sum = sum + first[c][k]*second[k][d];         }           multiply[c][d] = sum;         sum = 0;       }     }       printf(\"Product of entered matrices:-\ \");       for (c = 0; c < m; c++) {       for (d = 0; d < q; d++)         printf(\"%d\\t\", multiply[c][d]);         printf(\"\ \");     }   }     return 0; }  
 
   
  Solution
#include
