The second dataset we considered here is provided in a R pac
Solution
R-Code:
install.packages(\'dataset\')
 library(datasets)
 data(\"mtcars\")
 library(MASS)
fit <- lm(mpg ~ cyl+disp+hp+drat+wt+qsec+factor(vs)+factor(am)+gear+carb, data = mtcars)
 step <- step(fit, direction=\"forward\",trace=FALSE,criterion = \"AIC\")
 summary(step)
 fit <- lm(mpg ~ cyl+disp+hp+drat+wt+qsec+factor(vs)+factor(am)+gear+carb, data = mtcars)
 step <- step(fit, direction=\"forward\", trace=FALSE,criterion = \"BIC\")
 summary(step)
fit <- lm(mpg ~ cyl+disp+hp+drat+wt+qsec+factor(vs)+factor(am)+gear+carb, data = mtcars)
 step <- step(fit, direction=\"backward\", trace=FALSE,criterion = \"AIC\")
 summary(step)
fit <- lm(mpg ~ cyl+disp+hp+drat+wt+qsec+factor(vs)+factor(am)+gear+carb, data = mtcars)
 step <- step(fit, direction=\"backward\", trace=FALSE,criterion = \"BIC\")
 summary(step)
Parameter Analysis:
1>Resulting model with estimated paramenter when perform forward model selection using AIC.
Residuals:
 Min 1Q Median 3Q Max
 -3.4506 -1.6044 -0.1196 1.2193 4.6271
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 12.30337 18.71788 0.657 0.5181
 cyl -0.11144 1.04502 -0.107 0.9161
 disp 0.01334 0.01786 0.747 0.4635
 hp -0.02148 0.02177 -0.987 0.3350
 drat 0.78711 1.63537 0.481 0.6353
 wt -3.71530 1.89441 -1.961 0.0633 .
 qsec 0.82104 0.73084 1.123 0.2739
 factor(vs)1 0.31776 2.10451 0.151 0.8814
 factor(am)1 2.52023 2.05665 1.225 0.2340
 gear 0.65541 1.49326 0.439 0.6652
 carb -0.19942 0.82875 -0.241 0.8122
 ---
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.65 on 21 degrees of freedom
 Multiple R-squared: 0.869,   Adjusted R-squared: 0.8066
 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
2>Resulting model with estimated paramenter when perform forward model selection using BIC.
Residuals:
 Min 1Q Median 3Q Max
 -3.4506 -1.6044 -0.1196 1.2193 4.6271
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 12.30337 18.71788 0.657 0.5181
 cyl -0.11144 1.04502 -0.107 0.9161
 disp 0.01334 0.01786 0.747 0.4635
 hp -0.02148 0.02177 -0.987 0.3350
 drat 0.78711 1.63537 0.481 0.6353
 wt -3.71530 1.89441 -1.961 0.0633 .
 qsec 0.82104 0.73084 1.123 0.2739
 factor(vs)1 0.31776 2.10451 0.151 0.8814
 factor(am)1 2.52023 2.05665 1.225 0.2340
 gear 0.65541 1.49326 0.439 0.6652
 carb -0.19942 0.82875 -0.241 0.8122
 ---
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.65 on 21 degrees of freedom
 Multiple R-squared: 0.869,   Adjusted R-squared: 0.8066
 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
3>Resulting model with estimated paramenter when perform backward model selection using AIC.
Call:
Residuals:
 Min 1Q Median 3Q Max
 -3.4811 -1.5555 -0.7257 1.4110 4.6610
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 9.6178 6.9596 1.382 0.177915
 wt -3.9165 0.7112 -5.507 6.95e-06 ***
 qsec 1.2259 0.2887 4.247 0.000216 ***
 factor(am)1 2.9358 1.4109 2.081 0.046716 *
 ---
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.459 on 28 degrees of freedom
 Multiple R-squared: 0.8497,   Adjusted R-squared: 0.8336
 F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
4>Resulting model with estimated paramenter when perform backward model selection using BIC.
Residuals:
 Min 1Q Median 3Q Max
 -3.4811 -1.5555 -0.7257 1.4110 4.6610
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 9.6178 6.9596 1.382 0.177915
 wt -3.9165 0.7112 -5.507 6.95e-06 ***
 qsec 1.2259 0.2887 4.247 0.000216 ***
 factor(am)1 2.9358 1.4109 2.081 0.046716 *
 ---
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.459 on 28 degrees of freedom
 Multiple R-squared: 0.8497,   Adjusted R-squared: 0.8336
 F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11



