Let Hn be defined as follows Hn 0 n LE 0 1 n 1 or n 2 Hn
Solution
it can be proved by the second principle of mathematical induction.
let us assume that H(2k)=k for all k=1,2,3.......n
take k=n+1 n>2
then H(2n+2)=H(2n+2-1)+H(2n+2-2)-H(2n+2-3)=H(2n+1)+H(2n)-H(2n-1)
=[H(2n+1-1)+H(2n+1-2)-H(2n+1-3)]+H(2n)-H(2n-1)
=H(2n)+H(2n-1)-H(2n-2)+H(2n)-H(2n-1)
=H(2n)+H(2n)-H(2(n-1))
=n+n-n [by assumption]
=n
H(2n)=n for all n>=2
let us assume that H(2k-1)=k for all k=1,2,3.......n
take k=n+1
then H(2n+1)=H(2n+1-1)-H(2n+1-2)-H(2n+1-3)=H(2n)+H(2n-1)-H(2n-2)
=[H(2n-1)+H(2n-2)-H(2n-3)]+H(2n-1)-H(2n-2)=H(2n-1)+H(2n-2)-H(2n-3)+H(2n-1)-H(2n-2)
=H(2n-1)+H(2n-1)-H(2n-3)
=H(2(n-1)+1)+H(2(n-1)+1)-H(2(n-2)+1)
=n+n-n [by assumption]
=n
hence H(2n)=H(2n-1)=n for all n>=2 [proved]
