The unique solution to the initial value problem y y gt Y0

The unique solution to the initial value problem y\' + y = g(t), Y(0) = y_0, is y(t) = 5e^-4t + 9t - 2. Determine the constant y_0 and the function g(t). y_0 = help (numbers) g(t) = help (formulas)

Solution

Answer :

Given that y = 5e-4t + 9t -2 then y\' = -20e-4t + 9

Substitute y and y\' in y\' + y = g(t) we get

(- 20e-4t + 9 )+( 5e-4t + 9t -2 ) = g(t)

Therefore , g(t) = - 15e-4t + 9t + 7

and y0 = y(0) = 5e-4(0) + 9(0) - 2 = 5 - 2 = 3

 The unique solution to the initial value problem y\' + y = g(t), Y(0) = y_0, is y(t) = 5e^-4t + 9t - 2. Determine the constant y_0 and the function g(t). y_0 =

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site