Problem 2 The patient recovery time from a surgical procedur
(Problem 2) The patient recovery time from a surgical procedure is normally distributed with a mean of 5.3 days and standard deviation of 2.1 days. (5 points each, 10 points total) (a) What is the probability of spending more than 2 days in recovery after a surgical procedure? (b) What is the 90th percentile for recovery time after a surgical procedure?
Solution
a)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    2      
 u = mean =    5.3      
           
 s = standard deviation =    2.1      
           
 Thus,          
           
 z = (x - u) / s =    -1.571428571      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -1.571428571   ) =    0.941958433 [answer]
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.9      
           
 Then, using table or technology,          
           
 z =    1.281551566      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    5.3      
 z = the critical z score =    1.281551566      
 s = standard deviation =    2.1      
           
 Then          
           
 x = critical value =    7.991258288   [answer]

