Verify the identity sin x cos x 12 2sin x 1cos x 1Solut

Verify the identity. (sin x + cos x + 1)^2 = 2(sin x + 1)(cos x + 1)

Solution

To verify : (sin x + cos x + 1)2 = 2 (sin x + 1)(cos x + 1)

Let us take the left hand side of the equation and simplify it.

(sin x + cos x + 1)2 =[ sin x + (cos x + 1)2]

= sin2 x + 2 sin x (cos x + 1) + (cos x + 1)2 [Applying the identity of (a + b)2 = a2 + 2ab + b2]

= sin2 x + 2 sin x (cos x + 1) + cos2x + 2cos x + 1 [Again Applying the identity of (a + b)2]

= sin2 x + 2 sin x cos x + 2 sin x + cos2x + 2cos x + 1 [Solving the bracket]

= sin2 x + cos2x + 2 sin x cos x + 2 sin x + 2cos x + 1 [Bringing sin2 x and cos2 x together]

= 1 + 2 sin x cos x + 2 sin x  + 2cos x + 1 [As sin2 x + cos2x = 1 ]

= 1 + 1 + 2 sin x + 2 cos x + 2 sin x cos x [Re-arranging the terms]

= 2 + 2 sin x + 2 cos x + 2 sin x cos x

= 2 ( 1 + sin x) + 2 cos x ( 1 + sin x)

= ( 2 + 2 cos x)(1 + sin x)

= 2 (1 + cos x) (1 + sinx )

= 2 (sinx + 1)( cos x + 1) which is equal to the right hand side of the equation.

Hence verified.

 Verify the identity. (sin x + cos x + 1)^2 = 2(sin x + 1)(cos x + 1)SolutionTo verify : (sin x + cos x + 1)2 = 2 (sin x + 1)(cos x + 1) Let us take the left ha

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site