Verify the identity sin x cos x 12 2sin x 1cos x 1Solut
Solution
To verify : (sin x + cos x + 1)2 = 2 (sin x + 1)(cos x + 1)
Let us take the left hand side of the equation and simplify it.
(sin x + cos x + 1)2 =[ sin x + (cos x + 1)2]
= sin2 x + 2 sin x (cos x + 1) + (cos x + 1)2 [Applying the identity of (a + b)2 = a2 + 2ab + b2]
= sin2 x + 2 sin x (cos x + 1) + cos2x + 2cos x + 1 [Again Applying the identity of (a + b)2]
= sin2 x + 2 sin x cos x + 2 sin x + cos2x + 2cos x + 1 [Solving the bracket]
= sin2 x + cos2x + 2 sin x cos x + 2 sin x + 2cos x + 1 [Bringing sin2 x and cos2 x together]
= 1 + 2 sin x cos x + 2 sin x + 2cos x + 1 [As sin2 x + cos2x = 1 ]
= 1 + 1 + 2 sin x + 2 cos x + 2 sin x cos x [Re-arranging the terms]
= 2 + 2 sin x + 2 cos x + 2 sin x cos x
= 2 ( 1 + sin x) + 2 cos x ( 1 + sin x)
= ( 2 + 2 cos x)(1 + sin x)
= 2 (1 + cos x) (1 + sinx )
= 2 (sinx + 1)( cos x + 1) which is equal to the right hand side of the equation.
Hence verified.
