dydxxyyx y14 linear homogenous substitutionSolutionreplace u
dy/dx=(x/y+y/x), y(1)=-4 (linear homogenous substitution)
Solution
replace
 
 u = x/y
 
 u\' = (y - xy\')/y^2 = xu(1-uy\') = xu - y\'xu^2
 
 y\' = (xu-u\')/(xu^2)
 
 So your ODE becomes
 
 (xu-u\')/(xu^2) = u + 1/u +1
 
 xu - u\' = xu^3 + xu + xu^2
 
 u\' = -xu^2(1+u)
 
 u\'/{u^2(1+u)} = -x
 
 Now you have your variables seperated
 
 [1/(1+u) - (u-1)/u^2 ] du = -x dx
 
 ln(1+u) - ln u - u^(-1) + ln C = - x^2
 
 ln[C(1+u)/u] = -x^2 + 1/u
 
 C(1+u)/u = e^(1/u)/e^(x^2)
 
 u/(1+u) * e^(1/u) = C * e^(x^2)
 
 x/(x+y) * e^(y/x) = C * e^(x^2)

