Let X be the waiting time in minutes of a customer in a post
Let X be the waiting time (in minutes) of a customer in a post office. Suppose that X follows an exponential distribution with a probability density function
a) Find the probability that the waiting time is between 3 and 5 minutes.
b) Find the 50th percentile (median) of the waiting time.
Please include any calculator instructions.
Solution
A)
The mean of the distirbution is also the standard deviation, and is equal to 1/lambda:          
           
 mean = standard deviation = 1/lambda =    0.5      
           
 The area between two values in an exponential distribution ois          
           
 Area = e^(-lambda*x2) - e^(-lambda*x1)          
           
 As          
           
 x1 = lower bound =   3      
 x2 = upper bound =    5      
           
 Then          
           
 Area =    0.141045162   [ANSWER]  
************************
B)
As the left tailed area is given by
P(X<x) = 1 - exp(-x/2)
Then for the 50th percentile,
P(X<x) = 1 - exp(-x/2) = 0.5
exp(-x/2) = 0.5
-x/2 = ln(0.5)
x = -2*ln(0.5) = 1.386294361 [ANSWER]

