A parity check code has the parity check matrix H 1 0 0 0 1
Solution
a)
Genrator Matrix:
Input:H matrix
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1
--
Transforming 3 x 7 parity-check matrix H over GF(2) into standard form...
n=7 k=4 q=2
Start [0,4] = 1
Pivot [0,4] = 1
r_3 --> r_3 - r_1
1 0 0 0 1 1 1
0 1 0 1 0 1 1
1 0 1 1 0 1 0
--
Start [1,5] = 1
Pivot [1,5] = 1
r_1 --> r_1 - r_2
r_3 --> r_3 - r_2
1 1 0 1 1 0 0
0 1 0 1 0 1 1
1 1 1 0 0 0 1
--
Start [2,6] = 1
Pivot [2,6] = 1
r_2 --> r_2 - r_3
1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1
--
We are done. H\' = [B | I_3] =
1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1
--
Hence G = [I_4 | -B^T] =
1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0
![A parity check code has the parity check matrix H = [1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1] Determine the generator matrix and find all possible codewords.  A parity check code has the parity check matrix H = [1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1] Determine the generator matrix and find all possible codewords.](/WebImages/29/a-parity-check-code-has-the-parity-check-matrix-h-1-0-0-0-1-1081852-1761568256-0.webp)
![A parity check code has the parity check matrix H = [1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1] Determine the generator matrix and find all possible codewords.  A parity check code has the parity check matrix H = [1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1] Determine the generator matrix and find all possible codewords.](/WebImages/29/a-parity-check-code-has-the-parity-check-matrix-h-1-0-0-0-1-1081852-1761568256-1.webp)
