In developing patient appointment schedules a medical center
In developing patient appointment schedules, a medical center wants to estimate the mean time that a staff member spends with each patient. How large a sample should be taken if the desired margin of error is two minutes at a 95% level of confidence? How large a sample should be taken for a 99% level of confidence? Use a planning value for the population standard deviation of 7 minutes.
Solution
a)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    7  
 E = margin of error =    2  
       
 Thus,      
       
 n =    47.05787055  
       
 Rounding up,      
       
 n =    48   [ANSWER]
*********************
b)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.575829304  
       
 Also,      
       
 s = sample standard deviation =    7  
 E = margin of error =    2  
       
 Thus,      
       
 n =    81.27748336  
       
 Rounding up,      
       
 n =    82   [ANSWER]


