In developing patient appointment schedules a medical center

In developing patient appointment schedules, a medical center wants to estimate the mean time that a staff member spends with each patient. How large a sample should be taken if the desired margin of error is two minutes at a 95% level of confidence? How large a sample should be taken for a 99% level of confidence? Use a planning value for the population standard deviation of 7 minutes.

Solution

a)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.025  
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
s = sample standard deviation =    7  
E = margin of error =    2  
      
Thus,      
      
n =    47.05787055  
      
Rounding up,      
      
n =    48   [ANSWER]

*********************

b)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.005  
      
Using a table/technology,      
      
z(alpha/2) =    2.575829304  
      
Also,      
      
s = sample standard deviation =    7  
E = margin of error =    2  
      
Thus,      
      
n =    81.27748336  
      
Rounding up,      
      
n =    82   [ANSWER]

In developing patient appointment schedules, a medical center wants to estimate the mean time that a staff member spends with each patient. How large a sample s
In developing patient appointment schedules, a medical center wants to estimate the mean time that a staff member spends with each patient. How large a sample s

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site