if dydx cosx cos2 y and ypi4 when x0 thenSolutiondydx cosx
if dy/dx= cos(x) cos^2 (y) and y=pi/4, when x=0, then
Solution
dy/dx = cos(x) cos^2(y)
1/cos^2(y) dy = cos(x) dx
(1+tan^2(y)) dy = cos(x) dx
int 1+tan^2(y) dy = int cos(x) dx
tan(y) = sin(x) + C
x = 0 -> tan(pi/4) = sin(0) + C -> 1 = 0+C -> C = 1
So the solution is:
tan(y) = sin(x)+1
or
y = arctan(sin(x)+1)
