suppose 20 of a population consists of people with blonde ha
suppose 20% of a population consists of people with blonde hair. 8 people are randomly selected from this population.
a) find the probability that exactly 2 of them have blonde hair
b)Find the probability that at least 1 of them have blonde hair
c)find the probability that at least 6 of them have blonde hair.
Solution
A)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    8      
 p = the probability of a success =    0.2      
 x = the number of successes =    2      
           
 Thus, the probability is          
           
 P (    2   ) =    0.29360128 [ANSWER]
********************
b)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.2      
 x = our critical value of successes =    1      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   0   ) =    0.16777216
           
 Thus, the probability of at least   1   successes is  
           
 P(at least   1   ) =    0.83222784 [ANSWER]
***********************
c)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.2      
 x = our critical value of successes =    6      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   5   ) =    0.99876864
           
 Thus, the probability of at least   6   successes is  
           
 P(at least   6   ) =    0.00123136 [ANSWER]


