Let logb3 05646 logb4 07124 and logb5 08271 Using these v

Let logb(3) = 0.5646, logb(4) = 0.7124, and logb(5) = 0.8271. Using these values, evaluate logb(16)

Solution

logb(16) = logb(4^2)

Using the log Property : logz(x^b) = b*logz(x)

So, logb(16) = logb(4^2) = 2 logb(4)

Given logb(4) = 0.7124

So,  logb(16) = logb(4^2) = 2 logb(4) = 2* 0.7124 = 1.4248

Let logb(3) = 0.5646, logb(4) = 0.7124, and logb(5) = 0.8271. Using these values, evaluate logb(16)Solutionlogb(16) = logb(4^2) Using the log Property : logz(x^

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site