Let logb3 05646 logb4 07124 and logb5 08271 Using these v
Let logb(3) = 0.5646, logb(4) = 0.7124, and logb(5) = 0.8271. Using these values, evaluate logb(16)
Solution
logb(16) = logb(4^2)
Using the log Property : logz(x^b) = b*logz(x)
So, logb(16) = logb(4^2) = 2 logb(4)
Given logb(4) = 0.7124
So, logb(16) = logb(4^2) = 2 logb(4) = 2* 0.7124 = 1.4248
