A random sample of 23 people at Burger King revealed a mean
Solution
2.
a)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    5.6          
 t(alpha/2) = critical t for the confidence interval =    2.073873068          
 s = sample standard deviation =    1.1          
 n = sample size =    23          
 df = n - 1 =    22          
 Thus,              
 Margin of Error E =    0.47567567          
 Lower bound =    5.12432433          
 Upper bound =    6.07567567          
               
 Thus, the confidence interval is              
               
 (   5.12432433   ,   6.07567567   ) [ANSWER]
************************
For the next part, the problem is unclear. Does he mean to reduce the margin of error by 15%?
If so, then the new margin of error is
E = 0.47567567*0.85 = 0.40432432
Hence,
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    1.1  
 E = margin of error =    0.40432432  
       
 Thus,      
       
 n =    28.43294354  
       
 Rounding up,      
       
 n =    29   [ANSWER]
In case the problem meant another thing, please resubmit this question together with the clarification. That way we can continue helping you! Thanks!


