The distribution for the length of a persons tongue is norma
The distribution for the length of a person’s tongue is normally distributed. A random sample of 4 people had an average of 6.3 inches with a standard deviation of 1.2 inches. Find a 95% confidence interval for the true average length of a tongue.
Solution
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    6.3          
 t(alpha/2) = critical t for the confidence interval =    3.182446305          
 s = sample standard deviation =    1.2          
 n = sample size =    4          
 df = n - 1 =    3          
 Thus,              
               
 Lower bound =    4.390532217          
 Upper bound =    8.209467783          
               
 Thus, the confidence interval is              
               
 (   4.390532217   ,   8.209467783   ) [ANSWER]

