Given two complex numbers z1 r1cos 1 i sin 1 and z2 r2cos

Given two complex numbers z1 = r1(cos 1 + i sin 1) and z2 = r2(cos 2 + i sin 2), show that z1 z2 = r1 r2 [cos(1 2) + i sin(1 2)]

Solution

z1 = r1(cos 1 + i sin 1)

and z2 = r2(cos 2 + i sin 2),

Solution : z1*z2 =  r1(cos 1 + i sin 1)*r2(cos 2 + i sin 2)

= r1r2[cos1cos2 + icos1sin2 + isin1cos2 -sin1sin2]

=r1r2[(cos1cos2 - sin1sin2) +i(cos1sin2 + sin1cos2)

= r1r2[cos(1 +2) +sin(1 +2)]

Please check .

Given two complex numbers z1 = r1(cos 1 + i sin 1) and z2 = r2(cos 2 + i sin 2), show that z1 z2 = r1 r2 [cos(1 2) + i sin(1 2)]Solutionz1 = r1(cos 1 + i sin 1)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site