The 95 confidence interval is round to two decimal places a
The 95% confidence interval is (_____,_____)
round to two decimal places as needed.
Consider the following data from two independent samples with equal population variances. Construct a 95% confidence interval to estimate the difference in population means. Assume the population variances are equal and that the populations are normally distributed. X_1 vector = 67.8 X_2 vector = 75.1 s_1 = 12.9 s_2 = 8.3 n_1 = 10 n_2 = 14Solution
Calculating the means of each group,              
               
 X1 =    67.8          
 X2 =    75.1          
               
 Calculating the standard deviations of each group,              
               
 s1 =    12.9          
 s2 =    8.3          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    10          
 n2 = sample size of group 2 =    14          
 Thus, df = min(n1-1, n2-1) =    9
           
 Also, sD =    4.643459302          
               
 For the   0.9   confidence level, then      
               
 alpha/2 = (1 - confidence level)/2 =    0.05          
 t(alpha/2) =    2.262157163          
               
 lower bound = [X1 - X2] - t(alpha/2) * sD =    -17.80423472          
 upper bound = [X1 - X2] + t(alpha/2) * sD =    3.204234719          
               
 Thus, the confidence interval is              
               
 (   -17.80423472   ,   3.204234719   ) [ANSWER]
*****************************************************
Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!

