Find Taylor Polynomial of a degree of 4 f x6y3 and f03Solut
Find Taylor Polynomial of a degree of 4
f \' (x)=6y-3 and f(0)=3
f \' (x)=6y-3 and f(0)=3
Solution
dy/dx =6y-3
integrating both sides
dy/(6y-3) =dx
ln(6y-3)=x+c
6y-3=e(x+c)
(putting condition at x=0 y=3)
15=e^c
=>c=2.7
=>y=(15*e^x+3)/6
f1(x)=2.5 *e^x
f11(x)=2.5 *e^x, f111(x)=2.5 *e^x, f1111(x)=2.5 *e^x
writing taylor polynomial
= f(0) +f1(0)*x/1! + f11(0)*x^2/2! +........
=3+2.5x+2.5*(x^2)/2 +2.5*(x^3)/6 +2.5*(x^4)/24
