1Let x be a random variable with the following probability d

1-Let x be a random variable with the following probability distribution

x

-3

6

9

F(x)

1/6

1/2

1/3

find E( g(x) where g(x)- (2x+1)^2

Calculate the variance for g(x)= (2x+1)^2

2- For a laboratory assignment, if the equipment is working, the probability densty function of the observed outcome X is:

f(x)=            2 (1-x) 0 <x<1

Otherwise

1-find the E(X)

2-Calculate the variance of X

x

-3

6

9

F(x)

1/6

1/2

1/3

Solution

A)Given

X        -3                    6                       9

P(X)       1/6                1/2                    1/3

and

Y=g(X)=(2x+1)2

then probability distribution of g(X) is given by

g(X)                  25             169                361

P(g(x))              1/6                1/2             1/3

we have to find E(g(X)) and Var(g(X))

so E(g(X))=(25*1)/6 +(169*1)/2 + (361*1)/3

               =4.17+84.5+120.33=209

var(g(X))=E((g(X))2)-[E(g(X))]2

      E[(g(X))2)=(25)2/6 + (169)2/2     + (361)2/3

                   =104.17 +14280.5 +43440.33=57825

then var(g(X))=57825 - (209)2

                    =57825 - 43681 =14144 answer

B) given

f(x)=2(1-x)    0<x<1

we have to find E(X) and var (X)

hence

E(X) =integrate (x*2(1-x)) from 0 to 1

             on integration we got

    E(X)=    [x2 - 2x3/3 ] at 1    -     [x2   -2x3/3]at 0

            =1-    2/3 =1/3    answer

var(X)= E(X2) - [E(X)]2

E(X2) = integrate (x2*2(1-x)) from 0 to 1

            on integration we got

E(X2)= [(2x3/3 ) - (x4/2)] at 1 -   [(2x3/3) - (x4/2)] at 0

          =(2/3) -(1/2) = 1/6

then var(X) =(1/6) - (1/3)2       = (1/6) - (1/9) =1/18 answer

1-Let x be a random variable with the following probability distribution x -3 6 9 F(x) 1/6 1/2 1/3 find E( g(x) where g(x)- (2x+1)^2 Calculate the variance for
1-Let x be a random variable with the following probability distribution x -3 6 9 F(x) 1/6 1/2 1/3 find E( g(x) where g(x)- (2x+1)^2 Calculate the variance for

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site