60 of the students applying to college are accepted using bi

60% of the students applying to college are accepted, using binominal probability tables, what is the probability that the next 18 applicants: 1. at least 6 will be accepted, 2. exactly 10 will be acceptd, 3. exactly 5 will be rejected, 4. fifteen or more will be accepted, 5. compute standard deviation.

Solution

1.

Note that P(at least x) = 1 - P(at most x - 1).          
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    18      
p = the probability of a success =    0.6      
x = our critical value of successes =    6      
          
Then the cumulative probability of P(at most x - 1) from a table/technology is          
          
P(at most   5   ) =    0.005750497
          
Thus, the probability of at least   6   successes is  
          
P(at least   6   ) =    0.994249503 [answer]
**************
2.
Note that the probability of x successes out of n trials is          

P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    18      
p = the probability of a success =    0.6      
x = the number of successes =    10      
          
Thus, the probability is          
          
P (    10   ) =    0.173400322 [answer]

************

3.

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    18      
p = the probability of a success =    0.6      
x = the number of successes =    15      
          
Thus, the probability is          
          
P (    15   ) =    0.024554941 [answer]

****************

4.

Note that P(at least x) = 1 - P(at most x - 1).          
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    18      
p = the probability of a success =    0.6      
x = our critical value of successes =    15      
          
Then the cumulative probability of P(at most x - 1) from a table/technology is          
          
P(at most   14   ) =    0.967218703
          
Thus, the probability of at least   15   successes is  
          
P(at least   15   ) =    0.032781297 [answer]

************

5.

standard deviation = sqrt(n p (1 - p) = sqrt(18*0.6*(1-0.6))

=2.078460969 [ANSWER]

60% of the students applying to college are accepted, using binominal probability tables, what is the probability that the next 18 applicants: 1. at least 6 wil
60% of the students applying to college are accepted, using binominal probability tables, what is the probability that the next 18 applicants: 1. at least 6 wil

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site