Find the forced response of Qt 4 Qt 20 Qt 16 e2t With ini
Find the forced response of: Q\"(t) + 4 Q\'(t) + 20 Q(t) = 16 e^-2t With initial conditions: Q(0) = 2 and Q\'(0)= 0 What type of response does this system have: over damped, critically damped or under damped. Why?
Solution
First we solve the associated homogeneous ode
Q\'\'+4Q+20Q=0
THis is a linear homogeneous ode with constant coefficients so solution is fo teh form:y=exp(kx)
Substituting gives
k^2+4k+20=0
k=-2+4i,-2-4i
SO general solution to homogeneous ode is
y=exp(-2t)(A sin(4t)+B cos(4t))
Let particular solution be :yp=C e^{-2t}
SUbstituting gives
-4yp-8yp+20yp=16e^{-2t}
8yp=16e^{-2t}
yp=2e^{-2t}
SO, C=2
y=exp(-2t)(A sin(4t)+B cos(4t))+2 e^{-2t}
y(0)=B+2=2
B=0
y=Aexp(-2t) sin(4t)+2e^{-2t}
y\'=-2Aexp(-2t) sin(4t)+4A exp(-2t) cos(4t)-2 e^{-2t}
y\'(0)=4A-2=0
A=1/2
y=exp(-2t) sin(4t)/2+2e^{-2t}
(2)
Underdamped system as small oscillations with some oscillations
