Given EX 4 10 and EX 42 116 determine a VarX 4 b EX an
Given E(X + 4) = 10 and E[(X + 4)2] = 116, determine (a) Var(X + 4), (b) = E(X), and (c) 2 = Var(X ).
Solution
Given E (X + 4) = 10 and E [(X + 4)2] = 116.
 a) Var(X + 4) = E [(X + 4)2] - {E (X +4)}2
 =116 - (10)2
 = 116 - 100
 = 16
 b) µ = E(X) ,
 Since E(X + 4) = 10
 E(X) + 4 = 10
 ==>E(X) = 10 - 4 = 6
 c) s2 = Var(X)
 Var(X + 4) = Var(X) (Since varianceis independent of change of origin)
 ? s2 = Var(X) =16
![Given E(X + 4) = 10 and E[(X + 4)2] = 116, determine (a) Var(X + 4), (b) = E(X), and (c) 2 = Var(X ).SolutionGiven E (X + 4) = 10 and E [(X + 4)2] = 116. a) Var Given E(X + 4) = 10 and E[(X + 4)2] = 116, determine (a) Var(X + 4), (b) = E(X), and (c) 2 = Var(X ).SolutionGiven E (X + 4) = 10 and E [(X + 4)2] = 116. a) Var](/WebImages/30/given-ex-4-10-and-ex-42-116-determine-a-varx-4-b-ex-an-1083750-1761569523-0.webp)
