Consider the cash flow for an investment project with MARR
\"Consider the cash flow for an investment project with MARR = 17.4%. Determine the annual equivalent worth for the project. The cash flow for years 0 through 4 in dollars is as follows:
-4,100
1,600
1,700
1,300
540\"
Solution
Year
Cash Flow
PV Factor Formula
PV Factor @ 17.4%
PV
0
$ (4,100.00)
1/(1+0.174)^0
1
$ (4,100.00)
1
$ 1,600.00
1/(1+0.174)^1
0.851788756
$ 1,362.86
2
$ 1,700.00
1/(1+0.174)^2
0.725544086
$ 1,233.42
3
$ 1,300.00
1/(1+0.174)^3
0.618010294
$ 803.41
4
$ 540.00
1/(1+0.174)^4
0.52641422
$ 284.26
NPV
$ (416.04)
Equivalent annual worth = NPV/Ar,t
Ar,t = [1 – 1/(1+r)t]/r
r = Rate of interest = 17.4 % or 0.174
t = No. of periods = 4
Ar,t = [1 – 1/(1+0.174)4]/0.174
= [1 – 1/ (1.174)4]/0.174
= [1 – (1/ 1.899644732)]/0.174
= (1 – 0.52641422)/0.174
= 0.47358578/0.174
= 2.721757356
Equivalent annual worth = $ (416.04)/ 2.721757356 = $ (152.86)
| Year | Cash Flow | PV Factor Formula | PV Factor @ 17.4% | PV |
| 0 | $ (4,100.00) | 1/(1+0.174)^0 | 1 | $ (4,100.00) |
| 1 | $ 1,600.00 | 1/(1+0.174)^1 | 0.851788756 | $ 1,362.86 |
| 2 | $ 1,700.00 | 1/(1+0.174)^2 | 0.725544086 | $ 1,233.42 |
| 3 | $ 1,300.00 | 1/(1+0.174)^3 | 0.618010294 | $ 803.41 |
| 4 | $ 540.00 | 1/(1+0.174)^4 | 0.52641422 | $ 284.26 |
| NPV | $ (416.04) |

