Random sample of 87 airline pilots had an average yearly inc
Random sample of 87 airline pilots had an average yearly income of $99,400 with a standard deviation of $12,000. If we want to determine of 95% confidence interval yearly income, what is the value of t, and develop a 95% interval for the average yearly income of all pilots?
Solution
a)
 As
df = n - 1 = 87 - 1 = 86,
then for 95% confidence,
t(alpha/2) = critical t for the confidence interval = 1.987934206 [ANSWER, VALUE OF T]
******************************
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    99400          
 t(alpha/2) = critical t for the confidence interval =    1.987934206          
 s = sample standard deviation =    12000          
 n = sample size =    87          
df = n - 1 = 86
Thus,              
               
 Lower bound =    96842.45298          
 Upper bound =    101957.547          
               
 Thus, the confidence interval is              
               
 (   96842.45298   ,   101957.547   ) [ANSWER, CONFIDENCE INTERVAL]

