Solve using the laplace transform y 2y 6u1t 6u3t subject
Solve using the laplace transform y\' + 2y = 6u_1(t) - 6u_3(t) subject to y(0) = 6
Solution
Taking the Laplace Transform of the given equation
L[ y\' ] + 2L[ y ] = 6L[ u(t - 1) ] - 6L[ u(t - 3) ]
sY - y(0) + 2Y = (6e-s/s) - (6e-3s/s)
Plugging the given value of y(0) = 6
sY - 6 + 2Y = (6e-s/s) - (6e-3s/s)
Y(s + 2) = (6e-s/s) - (6e-3s/s) + 6
Y = ( 1/(s + 2) )( (6e-s/s) - (6e-3s/s) + 6 )
Taking Inverse Laplace Transform
y(t) = 6e-2t + 3u(t - 1) - 3u(t - 3) - 3e2-2tu(t - 1) + 3e6-2tu(t - 3)
where u(t) denotes unitstep function
![Solve using the laplace transform y\' + 2y = 6u_1(t) - 6u_3(t) subject to y(0) = 6SolutionTaking the Laplace Transform of the given equation L[ y\' ] + 2L[ y ] Solve using the laplace transform y\' + 2y = 6u_1(t) - 6u_3(t) subject to y(0) = 6SolutionTaking the Laplace Transform of the given equation L[ y\' ] + 2L[ y ]](/WebImages/30/solve-using-the-laplace-transform-y-2y-6u1t-6u3t-subject-1084167-1761569797-0.webp)