Find squareroot 3 i6 and write the answer in standard form
     Find (- squareroot 3 + i)^6 and write the answer in standard form.  64 - 64 squareroot 3 i  -64 squareroot 3 + 64 i  64 i  -64  Given vectors u = -10 i - 2j and v = 8i + 7j; Find u-0v.  -20 i + 5j  -19 i + 5j  -2i + 5j  -18 i - 9j  u = -8i - 2j, v = -2i + 9; Find u + v.  -11i + 7j  -6i - 11j  6i + 7j  -10i + 7j  u = 10 i - 2j, v = -8i + 7j; Find u - v.  17i + 5j  16i + 5j  18 i - 9j  2i + 5j  Find the magnitude of the vector y = 2 i + 4 j  2 squareroot 6 2 squareroot 5  6  Write the complex number z = 3(cos pi/3 + i sin pi/3) In rectangular form.  squareroot 3/2 + 3 squareroot 3/2 i  3/2 + 3 squareroot/2 i  squareroot 3/6 + squareroot 3/6 i  squareroot 3 + i  Use the given vectors to find the specified dot product: u = 8i + 4j; v = 9i -  -16  56  72  88 
  
  Solution
24. (-sqrt3 + i)6
R=sqrt(3+1)=2
theta=tan^-1(-1/sqrt3)= 5pi/6
Therefore (-sqrt3 + i)6=(2(cos 5pi/6 + i sin 5pi/6))6= 26(cos (6*5pi/6) + i sin(6* 5pi/6))
=64(-1+0i)
=-64
25. u=-10i-2j v=8i+7j
u-v= -10i -2j-8i-7j =-18i -9j

