Two methods of filling cereal boxes are being compared Both
Two methods of filling cereal boxes are being compared. Both methods fill the box
with the same amount of cereal on average so the company wants to select the
method with the lower variance. In a sample of 31 boxes filled using method 1, the
standard deviation of fill weights is .75 ounces and in a sample of 41 boxes filled
using method 2, the standard deviation is .65 ounces. At the 5% level of significance,
does it appear that the variance of method 1 is significantly larger than the variance of
method 2? Please show work.
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   sigma1^2 / sigma2^2   <=   1  
 Ha:    sigma1^2 / sigma2^2   >   1  
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical F, as alpha =    0.05   ,      
 alpha =    0.05          
 df1 = n1 - 1 =    30         
 df2 = n2 - 1 =    40          
 F (crit) =    1.744431964         
               
 Getting the test statistic, as              
 s1 =    0.75          
 s2 =    0.65          
               
 Thus, F = s1^2/s2^2 =    1.331360947          
                       
               
 Comparing F < Fcrit, we   FAIL TO REJECT THE NULL HYPOTHESIS.
Thus, there is no significant evidence that the variance of method 1 is greater than that of method 2. [CONCLUSION]  
               

