28 and 29 refer to the following setup In a random sample of
Solution
POPULATION PROPORTION (without p)              
 Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.08          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.02712932          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =    0.02682751 [ANSWER]
           
 ********************
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 E = width/2 = 0.025  
 p =    0.5  
       
 Thus,      
       
 n =    1536.583528  
       
 Rounding up,      
       
 n =    1537   [ANSWER]

