Solve the following Ivp using any method y 4y te2t y0 3 y
Solution
Let us solve IVP using Laplace Transformations
y\"-4y=tet
take laplace transformations on both side
L{y\"}-4L{y}=L{tet}
we have the formula
L(y\'\')=s^2Y(s)-sy(0)-y\'(0)
L(y(t))=Y(s)
L(t^ne^at)=n!/(s-a)^n+1
apply these formula in the problem
we get s^2Y(s)-sy(0)-y\'(0)-4Y(s)=1/(s-2)^2
plug in y(0)=-3 y\'(0)=1
s^2Y(s)+3s-1-4Y(s)=1/(s-2)^2
(s^2-4)Y(s)+3s-1 =1/(s-2)^2
(s^2-4)Y(s) =1/(s-2)^2+1-3s Taking lcd
={1+(1-3s)(s-2)^2} /(s-2)^2
Y(s) ={1+(1-3s)(s-2)^2} /(s-2)^2(s^2-4) we can write s^2-4 =(s+2)(s-2)
Y(s) ={1+(1-3s)(s-2)^2} /(s+2)(s-2)^3
using partial fractions
{1+(1-3s)(s-2)^2} /(s+2)(s-2)^3 =A/s+2 +B/(s-2) +c/(s-2)^2+D/(s-2)^3
next we have to find the values of A B C D
Take lcd and cancel out the common denominator
{1+(1-3s)(s-2)^2} = A(s-2)^3+B(s+2)(s-2)^2+C(s+2)(s-2)+D(s+2)
putting s=2 we get D=1/4
putting s=-2 we get A=-113/64
put s=0 and s=1 we get equations, solving those two equations, we get B=-79/64 C=-4/64
so we get Y(s) = (-113/64)/s+2 +(-79/64)/(s-2) +(-4/64)/(s-2)^2+(16/64)/(s-2)^3
taking common denomiator 64 outside
Y(s) = (1/64) {-113/(s+2) -79/(s-2) -4/(s-2)^2+16/(s-2)^3}
Take inverse laplace transform on both side
L-1{Y(s) = y(t) L-1{1/s+2)}= e-2t L-1{1/(s-2)} =e2t L-1{1/(s-2)^2}=te2t L-1{1/(s-2)^3}=(1/2)t^2e2t
| y(t) =1/64 {-113e-2t -79e2t-4te2t-8t^2e2t} |

