Determine the number of terms necessary to approximate cos x
     Determine the number of terms necessary to approximate cos x to 8 significant figures using the Maclaurin series approximation  cos x = 1 - x^2/2 + x^4/4! - x^6/6! + x^8/8! - ...  Calculate the approximation using a value of x = 0.3 pi. Write a program to determine your result. 
  
  Solution
function approx(sig_fig)
e_criterion = (0.5*10^(2-sig_fig))*100;
x = 0.3 * pi;
e_absolute == (0.5*10^(2-sig_fig)+1)*100;
i = 0;
while e_absolute > e_criterion
i = i + 1;
result(i)=((-1)^(i-1)*(x^(2*(i-1))))/(factorial(2*(i-1)));
while i > 1;
e_absolute = ( result(i) - result(i-1) ) / result(i);
end
if e_absolute < e_criterion
disp(result (i));
end
end
a=appro(0.3*pi)
a:
0.587

