Consider a population having a standard deviation equal to 9
Consider a population having a standard deviation equal to 9.87. We wish to estimate the mean of this population.
How large a random sample is needed to construct a 95 percent confidence interval for the mean of this population with a margin of error equal to 1? (Round your answer to the next whole number.)
Suppose that we now take a random sample of the size we have determined in part a. If we obtain a sample mean equal to 327, calculate the 95 percent confidence interval for the population mean. What is the interval’s margin of error? (Round your answers to the nearest whole number.)
   Margin of error _______________
| (a) | How large a random sample is needed to construct a 95 percent confidence interval for the mean of this population with a margin of error equal to 1? (Round your answer to the next whole number.) | 
Solution
a)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    9.87  
 E = margin of error =    1  
       
 Thus,      
       
 n =    374.2230098  
       
 Rounding up,      
       
 n =    375   [ANSWER]
*************************
b)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    327          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    9.87          
 n = sample size =    375          
               
 Thus,              
               
 Lower bound =    326.0010365          
 Upper bound =    327.9989635          
               
 Thus, the confidence interval is              
               
 (   326.0010365   ,   327.9989635   ) [ANSWER]
 Margin or error = (upper-lower)/2 = 0.998963476 [ANSWER]


