Write each vector as a linear combination of the vectors in
Write each vector as a linear combination of the vectors in S.
Write each vector as a linear combination of the vectors in S. (Use s_1 and s_2, respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) S= {(1, 2, -2), (2, -1, 1)}Solution
a).
z=(-9,-3,3)
s1=(1,2,-2) s2=(2,-1,1)
z= as1 +bs2 ( a,b any numbers)
(-9,-3,3) = a(1,2,-2) + b(2,-1,1)
(-9,-3,3) =(a+2b , 2a-b , -2a+b)
a+2b =-9 2a -b =-3
after solving we get a=-3 and b=-3
so z = -3s1 -3s2
b)similerly for (-2,-6,6)
(a+2b , 2a-b , -2a+b) = (-2,-6,6)
a+2b=-2 2a-b =-6
solving we get a=-14/5 b= 2/5
v =-14/5s1 +2/5 s2
c). w=(1,-18,18)
(a+2b , 2a-b , -2a+b) =(1,-18,18)
a+2b=1 2a-b =-18
a=-7 b=4
w = -7s1 +4s2
d). u=(3,-5,-5)
(a+2b , 2a-b , -2a+b) = (3,-5,-5)
we can\'t write it in linear becasue
2a -b = -5 and -2a+b =-5

