Let W be the subspace of R5 spanned by 1 2 0 0 0 0 2 3 0 0 0
Let W be the subspace of R^5 spanned by [1 2 0 0 0], [0 2 3 0 0], [0 0 0 4 5], [1 0 0 0 5]. Then the dimension of W is
Solution
First we check for linear independence of given vectors,
a[1 2 0 0 0]+b[0 2 3 0 0]+c[0 0 3 4 0]+d[0 0 0 4 5]+e[1 0 0 0 5]=0
This gives us
a+e=0 ie a=-e
2a+b=0 ie b=-2a=2e
3b+3c=0 ie c=-b=-2e
4c+4d=0 ie d=-c=2e
5d+5e=0 ie d=-e=2e
Hence e=0 and hence a=b=c=d=0
Hence these are 5 linearly independent vectors
So dimension of W is
E.5
![Let W be the subspace of R^5 spanned by [1 2 0 0 0], [0 2 3 0 0], [0 0 0 4 5], [1 0 0 0 5]. Then the dimension of W isSolutionFirst we check for linear indepen Let W be the subspace of R^5 spanned by [1 2 0 0 0], [0 2 3 0 0], [0 0 0 4 5], [1 0 0 0 5]. Then the dimension of W isSolutionFirst we check for linear indepen](/WebImages/30/let-w-be-the-subspace-of-r5-spanned-by-1-2-0-0-0-0-2-3-0-0-0-1085120-1761570470-0.webp)