Use the geometric sum formula to find out the value for this
     Use the geometric sum formula to find out the value for this: 1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^15 Use the substitution method to find out the complexity of this function: T(n) = n^2 + 5 middot T(n/2) 
  
  Solution
2. To find the sum of a certain number of terms of Geometric Series :-
 The Formula :- S(n) = a1(1-r^n)/1-r
where s(n) be the sum of n terms
 a1 be the first term
 r be the common ratio
Given :-
1 + 3 + 3^2 + 3^3 + 3^4 + ............ + 3^15
 
 where a1=3
 n=15
 r=3
Therefore S(n) = a1 ( 1 - r^n ) / (1 - r)
S(15) = 3 ( 1 - 3^15 ) / (1-3).

