A fair coin tossed three times and the events A B and C are
A fair coin tossed three times and the events A, B, and C are defined as follows:
A: {Atleast one head is observed}
B: {Atleast two heads are observed}
C: {The number of heads observed are odd}
Find the following probabilities by summing the probabilities of the appropriate sample points
(a) P(B):_________
Solution
For event A:
P(at least one head) = 1 - P(no heads)
= 1 - (1/2)(1/2)(1/2)
P(at least one head) = 7/8 = 0.875
*********************
For event B:
P(at least 2 heads) = P(2 heads) + P(3 heads)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    3      
 p = the probability of a success =    0.5      
 x = the number of successes =    2      
           
 Thus, the probability is          
           
 P (    2 heads   ) =    0.375
Similarly,
P ( 3 heads) = 0.125
Thus,
P(at least 2 heads) = 0.375 + 0.125 = 0.5
*******************************
P(odd) = P(1) + P(3)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    3      
 p = the probability of a success =    0.5      
 x = the number of successes =    1      
           
 Thus, the probability is          
           
 P (    1   ) =    0.375
As we saw, P(3) = 0.125.
Thus,
P(odd) = P(C) = 0.375 + 0.125 = 0.50
*********************************
Summary:
P(A) = 0.875
 P(B) = 0.5
 P(C) = 0.5
******************************
PART A)
P(B) = 0.5
*******************************
PART B)
P(A U Bc) = P(at least 1 head or \"not at least 2 heads\")
= P(1 head)
As we saw earlier, this is
= 0.375 [answer]
*****************************
PART C:
P(at least one head AND at least 2 heads AND odd heads)
= P(3 heads)
As we saw earlier, this is
= 0.125 [answer]


