Find the length of each side of the triangle determined by t
Find the length of each side of the triangle determined by the three points P1, P2, and P3. State whether the
triangle is an isosceles triangle, a right triangle, neither of these, or both.
P1 = (-5, -4), P2 = (-3, 4), P3 = (0, -1)
a. d(P1, P2) = 2 17; d(P2, P3) = 34; d(P1, P3) = 34
both
b. d(P1, P2) = 2 17; d(P2, P3) = 34; d(P1, P3) = 5 2
neither
c. d(P1, P2) = 2 17; d(P2, P3) = 34; d(P1, P3) = 34
isosceles triangle
d. d(P1, P2) = 2 17; d(P2, P3) = 34; d(P1, P3) = 5 2
right triangle
Solution
p1=(-5,-4) , p2=(-3,4) , p3=(0,-1)
d(p1,p2)= sqrt ((4+4)2+(-3+5)2)= 2 sqrt17
d(p2,p3)= sqrt((-1-4)2+(0+3)2)=sqrt 34
d(p1,p3)=sqrt ((-1+4)2+(0+5)2)= sqrt 34
Here the length of two sides are same.Therefore the triangle is isosceles
sqrt342+ sqrt342=c2
34 +34=c2
c=2sqrt17 which is the length of third side
Hence its a right angle triangle
Therefore the correct option is a
